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Molecular dynamics simulation has been used to model pattern formation in three-dimensional Rayleigh-
Bénard convection at the discrete-particle level. Two examples are considered, one in which an almost perfect
array of hexagonally shaped convection rolls appears, the other a much narrower system that forms a set of
linear rolls; both pattern types are familiar from experiment. The nature of the flow within the convection cells
and quantitative aspects of the development of the hexagonal planform based on automated polygon subdivi-
sion are analyzed. Despite the microscopic scale of the system, relatively large simulations with several million
particles and integration time steps are involved.
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The spontaneous emergence of flow patterns in externally
driven fluids is one of the more fascinating aspects of fluid
dynamics, and a great deal of experimental and theoretical
effort has been spent studying such phenomena over the past
century. Theoretical fluid dynamics has successfully ignored
the underlying atomicity, describing the dynamics in terms of
nonlinear partial differential equations for continuous fields;
the analysis of flow instability within this framework de-
mands approximations whose consequences are not always
readily assessed. Ideally, one would like to understand flow
instability in terms of the behavior at the microscopic level
by looking beyond the continuum representation to address
the dynamics of the molecules themselves, albeit at consid-
erable computational cost; given that sufficiently many mol-
ecules are followed for an adequate time interval, one can
reasonably expect to see the same kind of behavior �initially
in a qualitatively correct form, then, with even larger sys-
tems, also quantitatively�. The ability to simultaneously en-
compass the dynamics both at the molecular level and the
scale at which the cooperativity underlying structured flow
becomes manifest is an important step in trying to break free
of the limitations of traditional continuum fluid dynamics.

Accomplishing this goal calls for molecular dynamics
�MD� simulation, a technique in broad general use, but less
so for fluid dynamics �quite likely due to Avogadro’s
tyranny—an apparent need for extremely large systems to
accommodate the phenomena�. A very early MD effort re-
lated to bridging the gap between atomistic dynamics and
fluid behavior at the continuum level was understanding
long-time effects due to correlations in atomic trajectories
�1�, but it was only much later that actual MD simulation of
complex flow was attempted. Initial efforts were confined to
two dimensions, starting with the wakes of obstructed flows
�2,3� and followed by Rayleigh-Bénard �RB� convection
�4–9�; the study of Taylor-Couette flow �10,11� demonstrated
that complex three-dimensional flow could also be dealt with
and, subsequently, the Rayleigh-Taylor instability was also
modeled �12�. Other instances of MD contributing to fluid
dynamics include the moving interface between immiscible

liquids undergoing Poiseuille flow �13� and droplet breakup
in liquid jets �14�. The present study describes the applica-
tion of the MD approach to the full three-dimensional RB
problem, where the behavior is potentially far richer than in
two dimensions, and where simulation is more closely re-
lated to experiment; the ability to tackle increasingly de-
manding MD simulations, both in terms of size and duration,
reflects the availability of increasingly powerful and afford-
able computing resources.

The RB phenomenon—the rich variety of flow patterns
produced by convection in a fluid layer heated from below—
continues to be a problem of great interest �15–19�. The prin-
cipal dimensionless quantity governing the behavior is the
Rayleigh number, Ra=�gLz

3�T /��, where �, �, and � are
the thermal expansion coefficient, kinematic viscosity, and
thermal diffusivity, Lz is the layer height, g the gravitational
acceleration, and �T=T1−T0 is the temperature difference
between the lower hot wall T1 and the upper cold wall T0; a
critical value Rac marks the onset of convection, where
buoyancy overcomes viscous drag, and convection replaces
conduction as the preferred thermal transport mechanism.

The theory is simplified by the Boussinesq approximation,
in which it is assumed that the only temperature-dependent
fluid property is the density. Rac can be computed for various
kinds of boundary conditions �15�, as can the wavelength �
of the convection pattern at criticality, but not the actual
planform �e.g., rolls, spirals, and hexagons�. Roll width
�typically �Lz� represents a compromise; wide rolls reduce
both viscous drag and diffusive heat transfer between as-
cending hot and descending cold streams, whereas narrow
rolls reduce shear losses close to nonslip walls. Hexagonal
patterns were once associated with non-Boussinesq fluids
�18,20� �and are better known in convection driven by sur-
face tension�; the flow direction at the cell center is deter-
mined by the temperature dependence of � and differs for
gases and liquids. Hexagons are now known to occur in �es-
sentially� Boussinesq systems above Rac �21,22�, even form-
ing coexisting regions with opposite flows at the cell centers,
a phenomenon not attributable to variable �.

The MD simulation �23� considers a fluid of soft-sphere
atoms with a short-ranged, repulsive interaction u�r�
=4���� /r�12− �� /r�6�, with a cutoff at rc=21/6�. In the di-*Electronic address: rapaport@mail.biu.ac.il
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mensionless MD units used subsequently, � and � determine
length and energy, while temperature is defined by setting
kB=1; in the case of argon, �=3.4 Å, � /kB=120 K, and the
unit of time is 2.16 ps. The top and bottom thermal walls of
the system are each formed from a layer of fixed atoms ar-
ranged as a lattice, spaced to ensure roughness and impen-
etrability; lateral boundaries are periodic. The temperature
gradient is produced by rescaling the velocities of those at-
oms adjacent �within a range of 1.3� to the thermal walls;
rescaling occurs every 20 time steps to allow the effect to
propagate without unduly affecting the dynamics, and is ap-
plied to atoms moving away from the walls. In the initial
state, atoms are placed on the sites of a regular grid, with
random velocities corresponding to a uniform vertical tem-
perature gradient. The integration time step is 0.004. In view
of the extensive computations required, parallel processing
based on spatial decomposition is used.

Flow analysis entails spatial coarse graining, in which a
grid subdivision is applied to the region and the mean prop-
erties �velocity, temperature, density� for each grid cell are
evaluated for its occupant atoms. This is repeated every 20
time steps and averages over 100 successive measurements
recorded, with typical grid sizes of 5–6 horizontally and 3
vertically ��30 atoms per grid cell�; this represents a com-
promise between capturing the fine spatial and temporal de-
tail of the developing convection patterns and reducing the
noise due to thermal fluctuations.

Two of a series of runs are described in detail below; the
eventual outcomes of both are organized convection cell pat-
terns, a hexagonal array in the case of system A and a set of
linear rolls for B. System A contains Na=3 507 170 atoms
�of which Nw=447 458 are fixed in the walls� and is run for
a total of 3.19	106 time steps �=2.8	10−8 s�. The region
size is Lx	Ly 	Lz=521	451	35.3; despite the smallness
of Lz �a mere 120 Å�, the layer thickness exceeds the value
25 used in the Taylor-Couette study �10,11�. Since the rate of
pattern change slows as features become larger, a reflection
of the underlying horizontal diffusion processes, the long run
is needed to ensure a final steady state is reached. The
smaller system B has Ly =65 �Lx and Lz are unchanged�,
resulting in a more modest Na=506 696 �with Nw=64 328�,
and a run length of 0.48	106 time steps. In both cases,
T0=1, T1=10; the value g=3�T /2Lz ensures equality of the
potential and kinetic energy changes across the layer and
avoids excessive density variation. Large gradients and fields
are the norm for MD flow studies that must deal with rela-
tively small regions, here compensating for the small Lz to
ensure an adequate value of Ra; �T /T0 is large compared
with experiment �where �T /T0�0.01 or less�, and g=2.7
	1012gearth �the variation in gravitational potential across the
layer, gLz, is only 8 times that of �12��. The total computation
time for system A amounts to approximately 6 cpu-months
on a 2 GHz Intel Pentium processor, with the actual run us-
ing an 8-cpu cluster.

The final state of system A is shown in Fig. 1 as a stream-
line plot that reveals the full three-dimensional flow struc-
ture; the curved tracks �color coded to show temperature
variation� are derived from the coarse-grained grid �size 96
	82	12�. The most prominent feature is the array of hex-
agonal convection cells extending across the full depth of the

layer, with cold fluid descending at the cell centers. The cell
array is free to orient itself to accommodate a preferred � for
the particular size and shape of the periodic container; ani-
mated three-dimensional visualization allows following the
pattern development as cells grow and merge �not shown�.

Figure 2 shows the horizontal temperature distribution at
a distance �Lz /5 from the hot wall early in the run, after the
onset of convection but before a regular cell pattern devel-
ops. The distribution at the end of the run appears in Fig. 3,
with the periodic cell array clearly visible. Superimposed on
this image is a polygon subdivision produced by an auto-
mated Voronoi analysis of a slice through the flow structure
�limited system size cannot accommodate the large aspect
ratios Lx /Lz
100 used experimentally, as opposed to 15
here, that yield extended patterns amenable to Fourier and
other forms of analysis �24��; cell centers marked by white
spots are located at each of the local temperature minima �or
at the downward flow maxima� and the plane subdivided into
polygons in which the region nearer to a particular center
than to any other is assigned to its polygon. The resulting
polygon set provides a good fit to the cell boundaries where
hot upward flow is strongest �the fit quality improves as the
run progresses�, and is used in the quantitative analysis be-
low.

FIG. 1. �Color online� Final streamline plot for the large rectan-
gular system A showing the hexagonal cell pattern; the streamlines
are color coded to indicate temperature variation �ranging from red
for hot to blue for cold in the color online version�.

FIG. 2. �Color online� Early temperature distribution near the
lower wall.
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The time dependence of two prominent features of the
polygon arrays is shown in Fig. 4. The polygon count falls
from an initial value of �30 to the eventual 8 at time t
�5000, it then increases to 9 and finally drops back to 8 at
t�8000 as cells split and merge; this behavior is an indica-
tion of the slow relaxation processes that the simulations
must be able to cover. The mean deviation of the polygon
shape from regularity, expressed as the range of radial dis-
tances of the nearest and furthest vertices of each polygon,
shows a more gradual convergence to the final value of 4.5,
which is just 5% of the mean radius. Other planform prop-
erties include the mean distance from the center to the near-
est point on an edge, �hex /2, whose final value is 93±1, the
mean polygon area that is inversely proportional to the
count, and the area variation that falls to a minimum of ±2%
of the mean in the final state. The average number of vertices
per polygon must be 6; the spread of values falls to zero as
the final state is neared. These results quantify what is ob-
served directly, namely an initially disordered set of small
convection cells that grow, merge, and rearrange, culminat-
ing in what appears to be a stable array of hexagonal cells;
the final wavelength �hex=5.27Lz, a value not much larger
than the experimental 4Lz �21� �a lower �hex is reported in
�22��; the characteristic size of the cells present in the early,
irregular pattern is about half this value �Fig. 2�.

Details of the flow profile inside a single convection cell
appear in Fig. 5. The arrow plot shows the radial and vertical
components of the flow field within the cells, averaged over
all cells of the final state, and is evaluated by projecting the
flow velocity onto a series of vertical planes arranged as
radial spokes around each cell center, with only grid cells
that intersect the planes contributing. The maximum arrow
length corresponds to a speed of 0.52. While average de-
scending flow appears faster than ascending, this is consis-
tent with the toroidal roll shape that allows more space for
the latter. The nonslip nature of the flow at the lower wall is
partly masked by coarse graining, but flow rate is seen to
decrease near the wall �the effectiveness of the nonslip
mechanism is better appreciated in small systems run inter-
actively�. Local temperature �not shown� increases radially
outwards from the cell core and drops with height; its esti-
mation is problematic because the contribution of nonuni-
form bulk flow cannot be fully removed, and thermalization
includes atoms interacting with the walls, so the measured
range is 0.84–11.4 �rather than 1–10�, but the gradual varia-
tion across the roll profile and the absence of high gradients
near the walls �except where the cool downflow initially en-
counters the hot wall� are evidence of efficient heat exchange
between fluid and walls. Local density varies from 0.58 at
the cell core to 0.38 at the periphery �the overall mean is
0.4�.

The final state of run B consists of a set of six pairs of
counter-rotating rolls. Figure 6 shows the streamline plot; the
wavelength �roll �2	 roll diameter�=87=2.46Lz �note that
seven roll pairs would have produced a value close to the
theoretical �roll=2.016Lz �15��. The wavelength ratio from
runs A and B is �hex /�roll=2.14; the experimental ratio for
coexisting hexagons and rolls is 1.2–1.3 �21�. At an early
stage in run B there is an unsuccessful attempt to form a pair
of longitudinal rolls.

When T1 is lowered to 6 the roll pattern in system B is
unchanged, but at T1=4 the results are noisy and roll struc-
ture is not readily discerned, though it is still present in
weakened form. Strong finite-size effects due to small Lz
erase any hint of a sharp transition between conducting and

FIG. 3. �Color online� Final temperature distribution with
Voronoi polygon subdivision superimposed.

FIG. 4. Graphs showing time dependence �dimensionless MD
units� of the cell count and the mean radial range �typical fluctua-
tions are included for the latter�.

FIG. 5. Flow field azimuthally averaged over all cells; the axes
measure the radial distance from the cell center and the height
above the hot wall �dimensionless MD units�.

FIG. 6. �Color online� Final streamline plot for system B show-
ing the linear roll pattern.
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convecting states. The fluid has its own intrinsic thermody-
namic and transport properties determined by the soft-sphere
model and, since �T /T0 is large, does not satisfy the Bouss-
inesq condition; estimating Ra based on the Enskog theory
and a simple equation of state �7,8� is inappropriate here due
to the variation of � and � across the layer.

These simulations �and work in progress� provide strong
confirmation that MD is capable of reproducing known fluid
dynamical behavior; the unique aspect of this approach is
that, while following the dynamics at the atomic scale where
the underlying causes of flow instability and self-
organization are to be found, it simultaneously embraces the
continuum scale where fluid behavior is manifest and scant
evidence of atomism remains. Increasing computer perfor-

mance �parallel computers are ideal for simulations of this
kind� allows ever larger systems to be modeled, although this
growth is tempered by the fact that computation time in-
creases not only in proportion to system size but also due to
slow diffusive processes that govern structure development.
Larger systems reduce the necessarily high thermal and ve-
locity gradients and help eliminate spurious finite-size ef-
fects, allowing closer correspondence with experiment. The
outcome of the present MD study has obvious implications
for future MD exploration of fluid dynamical phenomena.

This work was begun during a visit to the University of
Edinburgh that was supported by the TRACS program at
EPCC; S. Pawley is thanked for his kind hospitality.
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